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Abstract

We apply the space–time conservation element and solution element (CESE) method to solve the ideal MHD equations
with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., $ Æ B = 0. In the setting of the
CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple
corrector procedure to update the spatial derivatives of magnetic field B after each time marching step to enforce $ Æ B = 0
at all mesh nodes, (iii) a constraint-transport method by using a special staggered mesh to calculate magnetic field B, and
(iv) the projection method by solving a Poisson solver after each time marching step. To demonstrate the capabilities of
these methods, two benchmark MHD flows are calculated: (i) a rotated one-dimensional MHD shock tube problem and
(ii) a MHD vortex problem. The results show no differences between different approaches and all results compare favor-
ably with previously reported data.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

While many computational fluid dynamics (CFD) methods have been successfully developed for gas
dynamics, extension of these methods for solving the Magneto-Hydro-Dynamic (MHD) equations involves
unique requirements and poses greater challenges [1–14]. In particular, for multi-dimensional MHD problems,
it is critical to maintain the divergence-free constraint of magnetic field, i.e., $ Æ B = 0, at all locations in the
space–time domain. Analytically, the constraint is ensured if it is satisfied in the initial condition. However, it
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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has been difficult to maintain this constraint in calculating evolving MHD problems. Violating the constraint
allows numerical errors to be accumulated over the computational time, leading to erroneous solutions and/or
numerical instability.

To satisfy $ Æ B = 0, a special treatment directly incorporated into the CFD method employed is often
required. Special treatments have been categorized into three groups: (i) The projection method, e.g.,
Brackbill and Barnes [5]: At each time step, the method solves a Poisson equation to update the magnetic
field to enforce $ Æ B = 0. (ii) The eight-wave formulation by Powell [6]: $ Æ B is not treated as zero in
deriving the MHD equations, leading to additional source/sink terms in equations for B. The CFD solver
employed would activate the sink/source terms to counter the unbalanced $ Æ B in numerical solutions. (iii)
The constrained-transport procedure, e.g., Evans and Hawley [7], Dai and Woodward [8], Balsara and
Spice [9], and Tóth [12], based on the use of staggered mesh to enforce the constraint at certain spots
of the control volume. Various versions of these three approaches have been developed to solve the
MHD equations in multiple spatial dimensions [4–13]. Recently, these methods have been assessed and
summarized by Tóth [12].

In the present paper, we report the application of the space–time conservation element and solution
element (CESE) method [15–20] to solve the two-dimensional MHD equations. Four approaches
are employed: (i) the original CESE method without any additional treatment for $ Æ B = 0, (ii) a simple
modification procedure to update the spatial derivatives of B after each time marching step such that
$ Æ B = 0 is enforced at all mesh nodes, (iii) an extended CESE method based on the constraint-transport
procedure, and (iv) the projection method coupled with the CESE method. The approach (i) is trivial.
Nevertheless, its results are comparable with other results by the three other approaches. Approaches
(ii) and (iii) are new schemes for $ Æ B = 0. Approach (iv), the projection method, is a conventional
and reliable approach to impose $ Æ B = 0. All results in the present paper compare well with previously
published data.

The rest of the paper is arranged as follows. Section 2 illustrates the governing equations. Section 3 provides
a brief review of the CESE method for two-spatial-dimensional problems. Section 4 shows the new CESE
schemes, i.e., approaches (ii) and (iii), for $ Æ B = 0. Section 5 provides the results and discussions. We then
offer conclusions and provide cited references.
2. Governing equations

The ideal MHD equations include the continuity, the momentum, the energy, and the magnetic induction
equations. In two spatial dimensions, the dimensionless equations can be cast into the following conservative
form:
oU

ot
þ oF

ox
þ oG

oy
¼ 0; ð2:1Þ
where
U ¼ ðq; qu; qv; qw; e;Bx;By ;BzÞT ¼ ðu1; u2; u3; u4; u5; u6; u7; u8ÞT; ð2:2Þ
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and
GðUÞ ¼

qv
qvu� ByBx

qv2 þ p0 � B2
y

qvw� ByBz
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. ð2:4Þ
In the above equations, q, p and e are density, pressure and specific total energy, respectively; u, v and w are
velocity components and Bx, By and Bz are magnetic field components in the x, y and z directions, respectively.
The total pressure and the specific total energy are
p0 ¼ p þ ðB2
x þ B2

y þ B2
z Þ=2; ð2:5Þ

e ¼ qeþ qðu2 þ v2 þ w2Þ=2þ ðB2
x þ B2

y þ B2
z Þ=2. ð2:6Þ
For calorically ideal gases, the specific internal energy e can be expressed as
e ¼ p
ðc� 1Þq ¼

RT
ðc� 1Þ ; ð2:7Þ
where c is the specific heat ratio, T is temperature and R is the gas constant. To proceed, we apply the chain
rule to Eq. (2.1) and obtain
oU

ot
þ Jx oU

ox
þ Jy oU

oy
¼ 0; ð2:8Þ
where Jx and Jy are Jacobian matrices of the spatial fluxes in the x and y directions, respectively. The com-
ponents of the matrices are listed in Appendix. The eigenvalues of matrix Jx are u� cx

f , u� cx
a, u� cx

s , u and u,
where cx

a, cx
s and cx

f are the speeds of the Alfvan wave, the slow shock wave, and the fast shock wave, respec-
tively, and they are defined as:
cx
a ¼ jBxj=

ffiffiffi
q
p

; ð2:9Þ

cx
f ¼

1
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q
þ
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In Eqs. (2.10) and (2.11), c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the speed of sound. Similarly, the eigenvalues of matrix Jy are v� cy

f ,
v� cy

a, v� cy
s , v and v, where cy

a, cy
s and cy

f are defined as:
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; ð2:12Þ
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3. The CESE method

The above MHD equations can be expressed as
oum

ot
þ ofm

ox
þ ogm

oy
¼ 0; m ¼ 1; 2; . . . ; 8; ð3:1Þ
where um, fm and gm are the entries of the flow variable vector and the flux vectors in the x and y directions,
respectively, and m is the index for the equation. Let x1 = x, x2 = y and x3 = t be the coordinates of a three-
dimensional Euclidean space E3, Eq. (3.1) becomes a divergence free condition:
r � hm ¼ 0; m ¼ 1; 2; . . . ; 8; ð3:2Þ

where hm = (fm,gm,um) are the current density vector. By using Gauss� divergence theorem in E3, we have
Z

V
r � hm dV ¼

I
SðV Þ

hm � ds ¼ 0; m ¼ 1; 2; . . . ; 8; ð3:3Þ
where (i) S(V) is the boundary of an arbitrary space–time region V in E3, and (ii) ds = n dr with dr and n,
respectively, are the area and the unit outward normal of a surface element on S(V). The CESE method inte-
grates Eq. (3.3) for the evolving flow variables.

For completeness, we will briefly illustrate the CESE method based on the following three parts: (i) The
definition of SE and CE in the space–time domain. (ii) The integration of Eq. (3.3) over a CE to form the
algebraic equations for the flow variables at a new time step. (iii) The reweighting procedure with added arti-
ficial damping in calculating the gradients of the flow variables. The discussion of the CESE method here will
be based on the modified CESE method for a quadrilateral mesh [19]. To be concise, our discussion of the
CESE method will be focused on a uniform quadrilateral mesh.

3.1. Definition of solution element and conservation element

In Fig. 1, the spatial domain is divided into non-overlapping quadrilaterals and any two neighboring quad-
rilaterals share a common side. The centroid of each quadrilateral is marked by either a hollow circle or a solid
circle. Point G, the centroid of quadrilateral ABCD, is marked by a solid circle, while the points N, E, W and S

are the centroids of the four neighboring quadrilaterals, and are marked by hollow circles. Because of the uni-
form mesh, G is also the centroid of polygon NAWBSCED, which coincides with quadrilateral NWSE. Let j, k

and n be the indices for x, y and t, respectively. Shown in Fig. 2, points A, B, C, D, N, E, W, S and G are at the
time level n � 1/2; points A 0, B 0, C 0, D 0, N 0, E 0, W 0, S 0 and G 0 are at the time level n; and points A00, B00, C00, D00,
N00, E00, W00, S00 and G00 are at the time level n + 1/2.
Fig. 1. Definition of space–time mesh for a two-dimensional problem.



Fig. 2. Grid arrangement in space–time domain.
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As shown in Fig. 2, the solution element SE(j,k,n) associated with point G 0 is defined as the union of three
quadrilateral planes, N 0W 0S 0E 0, A00ACC00, B00BDD00, and their immediate neighborhoods. Its spatial projection
is shown in Fig. 1 as the dashed lines. Similarly, associated with points N, E, W, and S, there are four solution
elements: SE(j,k + 1/2,n � 1/2), SE(j + 1/2,k,n � 1/2), SE(j � 1/2,k,n � 1/2), and SE(j,k � 1/2,n � 1/2). To
calculate the unknowns at G 0, the algebraic equations are derived based on space–time flux conservation
involved flow solutions at points G 0, N, E, W and S, referred to as the solution points. Point G 0, located at
t = tn is staggered with respect to points N, E, W and S at t = tn� 1/2.

As shown in Fig. 2, a space–time cylinder can be formed with surfaces associated with SE(j,k,n) and sur-
faces associated with one of the four SEs at the time level n � 1/2. For instance, cylinder N 0A 0G 0D 0NAGD is
formed by surfaces associated with SE(j,k,n) and SE(j k + 1/2,n � 1/2). This cylinder is one of the basic con-
servation elements (BCE) of point G 0. There are three other BCEs associated with point G 0, i.e.,
A 0W 0B 0G 0AWBG, B 0S 0C 0G 0BSCG and C 0E 0D 0G 0CEDG. The union of these four BCEs forms a compounded
conservation element (CCE) N 0W 0S 0E 0NWSE with its top center at point G 0.

3.2. The space–time integration

Inside SE(j,k,n), the discretized variables and fluxes, denoted with a superscript *, are assumed to be linear.
For m = 1,2, . . . , 8, let
u�mðx; y; t; j; k; nÞ ¼ ðumÞnj;k þ ðumxÞnj;kðx� xj;kÞ þ ðumyÞnj;kðy � yj;kÞ þ ðumtÞnj;kðt � tnÞ; ð3:4Þ
f �mðx; y; t; j; k; nÞ ¼ ðfmÞnj;k þ ðfmxÞnj;kðx� xj;kÞ þ ðfmyÞnj;kðy � yj;kÞ þ ðfmtÞnj;kðt � tnÞ; ð3:5Þ
g�mðx; y; t; j; k; nÞ ¼ ðgmÞ

n
j;k þ ðgmxÞ

n
j;kðx� xj;kÞ þ ðgmyÞ

n
j;kðy � yj;kÞ þ ðgmtÞ

n
j;kðt � tnÞ; ð3:6Þ
where ðumÞnj;k; ðfmÞnj;k; ðgmÞ
n
j;k; ðumxÞnj;k; ðumyÞnj;k; ðumtÞnj;k; ðfmxÞnj;k; ðfmyÞnj;k; ðfmtÞnj;k; ðgmxÞ

n
j;k; ðgmyÞ

n
j;k; and ðgmtÞ

n
j;k are flow

variables, fluxes, and their first-order derivatives at point G 0. Aided by the chain rule we have
ðfmxÞnj;k ¼
X8

l¼1

ðfm;lÞnj;kðulxÞnj;k; m ¼ 1; 2; . . . ; 8; ð3:7Þ

ðgmxÞ
n
j;k ¼

X8

l¼1

ðgm;lÞ
n
j;kðulxÞnj;k; m ¼ 1; 2; . . . ; 8; ð3:8Þ

ðfmyÞnj;k ¼
X8

l¼1

ðfm;lÞnj;kðulyÞnj;k; m ¼ 1; 2; . . . ; 8; ð3:9Þ

ðgmyÞ
n
j;k ¼

X8

l¼1

ðgm;lÞ
n
j;kðulyÞnj;k; m ¼ 1; 2; . . . ; 8; ð3:10Þ



604 M. Zhang et al. / Journal of Computational Physics 214 (2006) 599–617
where ðfm;lÞnj;k, ðgm;lÞ
n
j;k are the (m,l)th entries of the Jacobian matrixes Jx and Jy in the x and y directions,

respectively. To proceed, we assume that u�mðx; y; t; j; k; nÞ, f �mðx; y; t; j; k; nÞ and g�mðx; y; t; j; k; nÞ satisfy the
original MHD equations, Eq. (3.1), at point, (j,k,n):
ðumtÞnj;k ¼ �ðfmxÞnj;k � ðgmyÞ
n
j;k; m ¼ 1; 2; . . . ; 8. ð3:11Þ
Aided by Eqs. (3.7) and (3.10), Eq. (3.11) becomes
ðumtÞnj;k ¼ �
X8

l¼1

ðfm;lÞnj;kðulxÞnj;k �
X8

l¼1

ðgm;lÞ
n
j;kðulyÞnj;k; m ¼ 1; 2; . . . ; 8. ð3:12Þ
Similarly, for m = 1,2, . . . , 8, we have
ðfmtÞnj;k ¼
X8

l¼1

ðfm;lÞnj;kðultÞnj;k ¼ �
X8

l¼1

ðfm;lÞnj;k
X8

r¼1

ðfl;rÞnj;kðurxÞnj;k þ ðgl;rÞ
n
j;kðuryÞnj;k

h i
; ð3:13Þ

ðgmtÞ
n
j;k ¼

X8

l¼1

ðgm;lÞ
n
j;kðultÞnj;k ¼ �

X8

l¼1

gm;l

� �n

j;k

X8

r¼1

ðfl;rÞnj;kðurxÞnj;k þ ðgl;rÞ
n
j;kðuryÞnj;k

h i
. ð3:14Þ
Therefore, a set of given values of ðumÞnj;k, ðumxÞnj;k and ðumyÞnj;k completely determine the distribution of the flow
variables and fluxes, i.e., Eqs. (3.4)–(3.6), inside SE(j,k,n). Thus the flow variables ðumÞnj;k and their spatial gra-
dients ðumxÞnj;k and ðumyÞnj;k are the unknowns to be solved in the CESE method.

The time marching scheme to calculate ðumÞnj;k is based on integrating Eq. (3.3) over the CCE associated
with point G 0. Recall that the CCE is a quadrilateral cylinder with surfaces associated with five different
SEs. The top surface, quadrilateral N 0W 0S 0E 0 belongs to SE(j,k,n); quadrilaterals NAGD, N 0A 0AN

and N 0D 0DN belong to SE(j,k + 1/2,n � 1/2); quadrilaterals WAGB, W 0A 0AW and W 0B 0BW belong to
SE(j � 1/2,k,n � 1/2); quadrilaterals SBGC, S 0B 0BS and S 0C 0CS belong to SE(j,k � 1/2,n � 1/2); and quad-
rilaterals EDGC, E 0C 0CE and E 0D 0DE belong to SE(j + 1/2,k,n � 1/2).

The flux leaving each planar surface of the CCE is equal to the inner product of the current density vector
h�m ¼ ðf �m; g�m; u�mÞ, evaluated at the centroid of the surface, and the surface vector s = nS. For example, the top
surface of the CCE is quadrilateral N 0W 0S 0E 0 with an area Stop and the centroid is G 0(xj, k,yj, k, tn). At the cen-
troid of the top surface of the CCE, the current density vector h�m ¼ ððfmÞnj;k; ðgmÞ

n
j;k; ðumÞnj;kÞ, and the surface

vector is (0, 0,Stop). Thus the flux leaving the top surface of the CCE is
ðFLUXmÞtop ¼ ðumÞnj;kStop; m ¼ 1; 2; . . . ; 8. ð3:15Þ
Similarly calculation for fluxes through other surfaces of the CCE can be performed. For surfaces associated
with SE(j,k + 1/2,n � 1/2), the centriods of surfaces NAGD, NDD 0N 0 and NAA 0N 0 are denoted as
ðx0

N ; y
0
N ; t

n�1=2Þ, ðx1
N ; y

1
N ; t

n�1=4Þ and ðx2
N ; y

2
N ; t

n�1=4Þ, respectively. Their surface vectors are (0,0,�S1),

ðk1x
N ; k

1y
N ; 0Þ, and ðk2x

N ; k
2y
N ; 0Þ, where S1 is the area of quadrilateral NAGD, and
k1x
N ¼ ðyN � yDÞDt=2; ð3:16Þ

k1y
N ¼ ðxD � xNÞDt=2; ð3:17Þ

k2x
N ¼ ðyA � yN ÞDt=2; ð3:18Þ

k2y
N ¼ ðxN � xAÞDt=2. ð3:19Þ
The flux leaving each of the three surfaces can be calculated as the inner product of the corresponding flux
vector and the surface vector at the surface centroid. By summing up the fluxes, for m = 1,2, . . . , 8, we have,
ðFLUXmÞN ¼ �S1u�m x0
N ; y

0
N ; t

n�1=2; j; k þ 1=2; tn�1=2
� �

þ k1x
N f �m x1

N ; y
1
N ; t

n�1=4; j; k þ 1=2; tn�1=2
� �

þ k1y
N g�m x1

N ; y
1
N ; t

n�1=4; j; k þ 1=2; tn�1=2
� �

þ k2x
N f �m x2

N ; y
2
N ; t

n�1=4; j; k þ 1=2; tn�1=2
� �

þ k1y
1 g�m x2

N ; y
2
N ; t

n�1=4; j; k þ 1=2; tn�1=2
� �

. ð3:20Þ
Because the solution at the time step n � 1/2 is known, the value of this flux can be readily calculated.
Similarly, the fluxes leaving surfaces associated with SE(j � 1/2,k,n � 1/2), SE(j,k � 1/2,n � 1/2) and
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SE(j + 1/2,k,n � 1/2) can be readily calculated. For conciseness, we simply name these fluxes as (FLUXm)W,
(FLUXm)S and (FLUXm)E. As a result, the space–time flux conservation over the CCE is
ðFLUXmÞtop þ
XNEWS

l

ðFLUXmÞl ¼ 0; m ¼ 1; 2; . . . ; 8. ð3:21Þ
Note that only the first term in the above equation contains the unknowns to be solved at point G 0. Aided by
Eq. (3.15), the flow variables at the current time step n can be calculated by
ðumÞnj;k ¼ �
PNEWS

l ðFLUXmÞl
Stop

; m ¼ 1; 2; . . . ; 8. ð3:22Þ
3.3. Solutions of flow variable gradients

To proceed, we calculate the spatial gradients of the flow variables ðumxÞnj;k and ðumyÞnj;k. The calculation is
divided into two steps: (i) Finite-differencing the flow variables um at point G 0, N 0, E 0, W 0 and S 0, at t = tn to
obtain four sets of umx and umy. (ii) Apply a reweighing procedure to the above four sets of umx and umy to
determine ðumxÞnj;k and ðumyÞnj;k at G 0. In what follows, these two calculation steps are illustrated.

Flow variables um at point G 0 are obtained from Eq. (3.22). The flow variables um at four neighbor points
N 0, W 0, S 0 and E 0 are obtained by using the Taylor series expansion along the time axis from the time level
n � 1/2, i.e., for m = 1,2, . . . , 8,
ðu0mÞ
¼
l ðumÞn�1=2

l þ Dt
2
ðumtÞn�1=2

l ; ð3:23Þ
where l = 1, 2, 3, and 4 denoting point N 0, E 0, W 0 and S 0, respectively.
The square plane N 0E 0S 0W 0 is divided into four triangles; N 0W 0G 0, W 0S 0G 0, S 0E 0G 0 and E 0N 0G 0. In each tri-

angle, finite-difference um at the three vertices to obtain the flow variable gradient ðumxÞnj;k and ðumyÞnj;k. Consider
triangle DN 0W 0G 0, the flow variable gradient at its centroid can be expressed as,
u 1ð Þ
mx

� �
G0
¼ Dx=D; ð3:24Þ

u 1ð Þ
my

� �
G0
¼ Dy=D; ð3:25Þ
where
Dx ¼
u0m
� �

N 0
� ðumÞG0 yN � yG

u0m
� �

W 0
� ðumÞG0 yW � yG

					
					; ð3:26Þ

Dy ¼
u0m
� �

N 0
� ðumÞG0 xG � xN

u0m
� �

W 0
� ðumÞG0 xG � xW

					
					; ð3:27Þ

D ¼
xN � xG yN � yG

xW � xG yW � yG

				
				 ð3:28Þ
and
ðumÞG0 ¼ ðumÞnj;k. ð3:29Þ
For triangles DW 0S 0G 0, DS 0E 0G 0 and DE 0N 0G 0, the flow variable gradients at their centroids, denoted by
ðuð2Þmx ÞG0, ðuð2Þmy ÞG0, ðuð3Þmx ÞG0, ðuð3Þmy ÞG0, ðuð4Þmx ÞG0 and ðuð4Þmy ÞG0, can be obtained in a similar way.

To proceed, a reweighting procedure is applied to the four sets of flow variable gradients to obtain the final
flow variable gradient at G 0, i.e., for m = 1,2, . . . , 8,
ðumxÞnj;k ¼
X4

l¼1

W l
m

� �a
u lð Þ

mx

� �
G0

h i,X4

l¼1

W l
m

� �a
; ð3:30Þ
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umy

� �n

j;k
¼
X4

l¼1

W l
m

� �a
u lð Þ

my

� �
G0

h i,X4

l¼1

W l
m

� �a
; ð3:31Þ
where
W l
m ¼

Y4

q¼1;q6¼l

W q
m for l ¼ 1; 2; 3; 4 ð3:32Þ
and
W q
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðqÞmx

� �
G0

h i2

þ uðqÞmy

� �
G0

h i2
r

. ð3:33Þ
For shock capturing, a = 1 or 2 as a prescribed constant. For flows without shock, we let a = 0. As such, Eqs.
(3.30) and (3.31) reduce to the standard central-differencing method.

4. Extended CESE schemes for $ Æ B = 0

In this section, we illustrate two new CESE schemes for $ Æ B = 0: Schemes I and II. Both schemes are built
based on special features of the original CESE method. Scheme I takes advantage of the fact that the flow
variable gradients ðumxÞnj;k and ðumyÞnj;k are directly used as the unknowns and they march in time hand-in-hand
with the flow variables ðumÞnj;k. Scheme I is a simple adjustment to the calculation of ðumxÞnj;k and ðumyÞnj;ksuch
that $ Æ B = 0 is satisfied at all mesh points after each time marching step. Scheme II takes advantage of stag-
gered mesh arrangement in the original CESE method. By a simple adjustment of the mesh nodes employed in
calculating the magnetic flux, we ensure the satisfaction of $ Æ B = 0 at all solution points. In what follows, we
report these two schemes.

4.1. Scheme I

As illustrated in the above section, the flow variables ðumÞnj;k are calculated by space–time flux conservation,
i.e., Eq. (3.22), over a CCE with its top center at point (j,k,n), while the flow variable gradients ðumxÞnj;k and
ðumyÞnj;k are calculated by a combination of a central differencing and a reweighing procedure. In Scheme I, we
first follow the above CESE algorithm to calculate the flow variables and their spatial gradients. After each
time marching step, a corrector step is applied to adjust the values of ðoBx

ox Þ
n
j;k and ðoBy

oy Þ
n
j;k. The calculated results

of all other unknowns remain intact. Note that ðoBx
ox Þ

n
j;k and ðoBy

oy Þ
n
j;k are denoted as ðu6xÞnj;k and ðu7yÞnj;k in Eq.

(2.2). The adjustments to these two terms are
ðu6xÞnew
j;k ¼ ðu6xÞnj;k � 1

2
ðu6xÞnj;k þ ðu7yÞnj;k
h i

; ð4:1Þ

ðu7yÞnew
j;k ¼ ðu7yÞnj;k � 1

2
ðu6xÞnj;k þ ðu7yÞnj;k
h i

; ð4:2Þ
where the updated gradient is denoted by the superscript new. By adding the two equations above, we yield
ðu6xÞnew
j;k þ ðu7yÞnew

j;k ¼ 0. ð4:3Þ
That is, with the additional treatment for ðoBx
ox Þj;k and ðoBy

oy Þj;k by Eqs. (4.1) and (4.2), the constraint ($ Æ B )j,k =
0 is satisfied at each mesh node in each time marching step.

4.2. Scheme II

Scheme II is based on a specially defined SE for solving the magnetic induction equations. As illustrated in
Fig. 3, the special conservation element (SCE) associated with point G 0 is defined as quadrilateral
P 0Q 0R 0T 0PQRT, which composes of six planes: P 0Q 0R 0T 0, P 0Q 0QP, Q 0R 0RQ, R 0T 0TR, T 0P 0PT and PQRT.
The six planes are referred to as special solution elements (SSEs). The SSE and SCE are defined for solving
magnetic field components Bx and By only. Shown in Fig. 3, the solution points N 0, E 0, W 0 and S 0 surrounding



Fig. 3. Definition of special SE and CE for a inherent constrained-transport scheme.
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G 0 are at the middle of line segments P 0Q 0, P 0T 0, Q 0R 0 and R 0T 0, respectively. Thus the SCE here includes a
space–time region larger than the original CCE.

To proceed, the SSEs, P 0Q 0R 0T 0 and PQRT, are defined to be associated with the solution points G 0 and G,
respectively. Similarly, the SSEs, P 0Q 0QP, Q 0R 0RQ, R 0T 0TR and T 0P 0PT are associated with the solution
points N, W, S and E, respectively. Inside SSEs, the profiles of Bx and By follow the first-order Taylor series
expansion. For example, we consider SSE P 0Q 0QP associated with the solution point N:
u�mðx; y; t; j; k þ 1=2; n� 1=2Þ ¼ ðumÞn�1=2
j;kþ1=2 þ ðumxÞn�1=2

j;kþ1=2ðx� xj;kþ1=2Þ

þ ðumyÞn�1=2
j;kþ1=2ðy � yj;kþ1=2Þ þ ðumtÞn�1=2

j;kþ1=2ðt � tn�1=2Þ; ð4:4Þ

f �mðx; y; t; j; k þ 1=2; n� 1=2Þ ¼ ðfmÞn�1=2
j;kþ1=2 þ ðfmxÞn�1=2

j;kþ1=2ðx� xj;kþ1=2Þ

þ ðfmyÞn�1=2
j;kþ1=2ðy � yj;kþ1=2Þ þ ðfmtÞn�1=2

j;kþ1=2ðt � tn�1=2Þ; ð4:5Þ

g�mðx; y; t; j; k þ 1=2; n� 1=2Þ ¼ ðgmÞ
n�1=2
j;kþ1=2 þ ðgmxÞ

n�1=2
j;kþ1=2ðx� xj;kþ1=2Þ

þ ðgmyÞ
n�1=2
j;kþ1=2ðy � yj;kþ1=2Þ þ ðgmtÞ

n�1=2
j;kþ1=2ðt � tn�1=2Þ; ð4:6Þ
where m = 6 and 7. Similar discretization procedure is employed in the other SSEs.
To proceed, we perform numerical integration of the magnetic induction equations in x and y directions

over the SCE based on the above discretization scheme for the SSEs. The magnetic induction equations
can be reformulated as:
oBx

ot
þ oX

oy
¼ 0; ð4:7Þ

oBy

ot
� oX

ox
¼ 0; ð4:8Þ
where X = vBx � uBy. Integrating Eqs. (4.7) and (4.8) over the SCE, we have
I
SðV Þ

ð0;X;BxÞ � ds ¼ 0; ð4:9Þ

I
SðV Þ

ð�X; 0;ByÞ � ds ¼ 0. ð4:10Þ
Consider Eq. (4.9), flux leaving plane P 0Q 0R 0T 0 is
FLUXP 0Q0R0T 0 ¼ DxDyðBxÞnj;k. ð4:11Þ
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Flux leaving plane PQRT is
FLUXPQRT ¼ �DxDyðBxÞn�1=2
j;k . ð4:12Þ
Flux leaving plane P 0Q 0QP is
FLUXP 0Q0QP ¼
DxDt

2
ðXÞn�1=2

j;kþ1=2 þ
Dt
4
ðXtÞn�1=2

j;kþ1=2


 �
¼ DxDt

2
ðXÞn�1=4

j;kþ1=2. ð4:13Þ
Flux leaving plane R 0T 0TR is
FLUXR0T 0TR ¼ �
DxDt

2
ðXÞn�1=2

j;k�1=2 þ
Dt
4
ðXtÞn�1=2

j;k�1=2


 �
¼ �DxDt

2
ðXÞn�1=4

j;k�1=2. ð4:14Þ
Fluxes leaving planes Q 0R 0RQ and T 0P 0PT are zero,
FLUXQ0R0RQ ¼ 0; ð4:15Þ
FLUXT 0R0RT ¼ 0. ð4:16Þ
The flux balance over SCE is
FLUXP 0Q0R0T 0 þ FLUXPQRT þ FLUXP 0Q0QP þ FLUXQ0R0RQ þ FLUXR0T 0TR þ FLUXT 0P 0PT ¼ 0. ð4:17Þ
Substituting Eqs. (4.11)–(4.16) into Eq. (4.17), we have
ðBxÞnj;k ¼ ðBxÞn�1=2
j;k þ Dt

2Dy
ðXÞn�1=4

j;k�1=2 � ðXÞ
n�1=4
j;kþ1=2

h i
. ð4:18Þ
Similarly, integration of Eq. (4.10) over SCE gives
ðByÞnj;k ¼ ðByÞn�1=2
j;k þ Dt

2Dx
ðXÞn�1=4

jþ1=2;k � ðXÞ
n�1=4
j�1=2;k

h i
. ð4:19Þ
For SCEs associated with points E 0 and W 0, we have
ðBxÞnjþ1=2;k ¼ ðBxÞn�1=2
jþ1=2;k þ

Dt
2Dy

ðXÞn�1=4
jþ1=2;k�1=2 � ðXÞ

n�1=4
jþ1=2;kþ1=2

h i
. ð4:20Þ

ðBxÞnj�1=2;k ¼ ðBxÞn�1=2
j�1=2;k þ

Dt
2Dy

ðXÞn�1=4
j�1=2;k�1=2 � ðXÞ

n�1=4
j�1=2;kþ1=2

h i
. ð4:21Þ
For SCEs associated with points N 0 and S 0, we have
ðByÞnj;kþ1=2 ¼ ðByÞn�1=2
j;kþ1=2 þ

Dt
2Dx

ðXÞn�1=4
jþ1=2;kþ1=2 � ðXÞ

n�1=4
j�1=2;kþ1=2

h i
. ð4:22Þ

ðByÞnj;k�1=2 ¼ ðByÞn�1=2
j;k�1=2 þ

Dt
2Dx

ðXÞn�1=4
jþ1=2;k�1=2 � ðXÞ

n�1=4
j�1=2;k�1=2

h i
. ð4:23Þ
At point G 0, we obtain (oBx/ox) and (oBy/oy) as
oBx

ox

� �n

j;k

¼
ðBxÞnjþ1=2;k � ðBxÞnj�1=2;k

Dx
; ð4:24Þ

oBy

oy

� �n

j;k

¼
ðByÞnj;kþ1=2 � ðByÞnj;k�1=2

Dy
. ð4:25Þ
Aided by Eqs. (4.20)–(4.23), we have
ðr � BÞnj;k ¼
ðBxÞnjþ1=2;k � ðBxÞnj�1=2;k

Dx
�
ðByÞnj;kþ1=2 � ðByÞnj;k�1=2

Dy
¼ ðr � BÞn�1=2

j;k . ð4:26Þ
That is, if ðr � BÞn�1=2
j;k ¼ 0, ðr � BÞnj;k ¼ 0.
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Based on the use of the above SSE and SCE, this extended CESE scheme is proposed to solve Bx, By,
oBx/ox and oBy/oy at point G 0. All other variables are calculated by using the original CESE scheme as illus-
trated in Section 3.

5. Results and discussions

In this section, we report results obtained from the CESE schemes. Section 5.1 presents the two-dimen-
sional results of a MHD shock tube problem. Section 5.2 shows the solution of a MHD vortex problem, which
is a real two-dimensional problem. For the two problems, we employ the new CESE schemes for maintaining
$ Æ B = 0. Moreover, for the MHD vortex problem, we also employ the projection procedure, i.e., the Poisson
solver, for maintaining $ Æ B = 0.

5.1. A rotated shock tube problem

In a one-dimensional problem, $ Æ B = 0 is automatically satisfied. A common practice to assess multi-
dimensional solvers for $ Æ B = 0 is to perform two-dimensional calculation of an inherently one-dimensional
problems formulated in the rotated coordinates such that the one dimensionality of the flow is not aligned
with the numerical mesh and $ Æ B = 0 may not be easily satisfied. As such, the degree of deficiency in satis-
fying $ Æ B = 0 can be straightforwardly judged by direct comparison between the two-dimensional results
with the corresponding one-dimensional result. As shown in Fig. 4, the computation is conducted in the rect-
angular domain OABC. The one-dimensional problem is defined along the n-direction. Through coordinate
rotation, flow variables in the x–y coordinates can be transformed to be in the n–g coordinates, and vice versa.

The initial condition, defined along n-direction, consists of two distinct states:
ðq; u; v; p;Bg;BzÞ ¼
1; 10; 0; 20; 5=

ffiffiffiffiffiffi
4p
p

; 5=
ffiffiffiffiffiffi
4p
p� �

for left;

ð1;�10; 0; 1; 5=
ffiffiffiffiffiffi
4p
p

; 5=
ffiffiffiffiffiffi
4p
p
Þ for right

(

with c = 5/3, w = 0 and Bz = 0. The flow condition and computational parameters are taken from Tóth [12].
The computational domain is (x,y) 2 [0,1] · [0,2/N], where N is the grid point in x-direction and set to
N = 256. The rotated angle is set to tan�1 2 � 63.43�. A periodic condition is imposed in the g-direction.
The computation is up to t ¼ 0:08=

ffiffiffi
5
p

, and the computational domain is covered by a mesh of 256 · 2 grid
points.

Fig. 5 shows results by the original CESE scheme, in which dots denote the present solution and solid lines
represent one-dimensional solution in Tóth [12]. The right-moving waves include a fast shock, a slow shock
and a contact discontinuity. The left-moving waves include a fast shock and a slow rarefaction wave. Favor-
able comparison is found between our present two-dimensional results and the one-dimensional results. We
also employed the new schemes proposed in Section 4 for this problem. Fig. 6 shows the comparison of
the pressure and magnetic field component Bg profiles obtained by using: (i) the original CESE scheme, (ii)
Fig. 4. Relation between x–y coordinates and n–g coordinates. Rectangle OABC is the computational domain.



Fig. 5. Solution to a shock tube, Solid lines stand for one-dimensional results by Tóth [12], dots for present results. (a) Pressure. (b)
Density. (c) Velocity component Un. (d) Velocity component Ug. (e) Magnetic field component Bg.
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Fig. 6. Comparison between different CESE schemes for a MHD shock tube problem. (a) Profiles of P. (b) Profiles of Bg.
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the Scheme I with a simple adjustment and (iii) the Scheme II based on the constraint-transport procedure.
For shock capturing, there is no obvious difference between the original CESE scheme and the new schemes.

Analytically, Bn is constant along the n-direction. Fig. 7 shows the Bn profiles calculated by the three dif-
ferent CESE schemes. We observe oscillations around the moving shocks. The oscillations with the original
scheme are smaller than that with Scheme I, and are comparable with that with Scheme II. Away from shocks,
the solutions are smooth.

The same assessment was conducted by Tóth [12] by using several special treatments for $ Æ B = 0, includ-
ing the 8-wave method, various versions of the constraint-transport methods, and projection method. Refer to
Fig. 11 in [12], oscillations of Bn occur around shocks for all approaches employed. Comparing with the results
shown by Tóth [12], the magnitudes of Bn oscillations near the moving shocks calculated by the present three
CESE methods are much smaller. Moreover, as shown in Fig. 14 of Tóth [12], spurious oscillations of other
variable were also observed. In our case, as shown in Fig. 6, no oscillation is observed in present results. With-
out using a special treatment for $ Æ B = 0, the calculated results compare favorably with one-dimensional
Fig. 7. Profiles of Bn for a MHD shock tube problem from different CESE schemes.
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data. With the use of special treatments for $ Æ B = 0, i.e., Schemes I and II, illustrated in Section 4, no obvi-
ous improvement is observed.

5.2. The MHD vortex problem

In this section, we report the numerical solution of a MHD vortex problem by Orsazg and Tang [21]. The
same problem has been employed by Jiang and Wu [4], Tang and Xu [11], and Tóth [12] for assessing the
numerical treatments for $ Æ B = 0. In particular, Jiang and Wu [4] reported numerical instability if the pro-
jection procedure was not used. The initial conditions of the flow field are:
Fig. 8.
t = 2.
qðx; y; 0Þ ¼ c2; pðx; y; 0Þ ¼ c;

uðx; y; 0Þ ¼ � sin y; vðx; y; 0Þ ¼ sin x; wðx; y; 0Þ ¼ 0;

Bxðx; y; 0Þ ¼ � sin y; Byðx; y; 0Þ ¼ sin 2x; Bzðx; y; 0Þ ¼ 0;
Pressure contours of a MHD vortex problem by the original CESE scheme. (a) Pressure contours t = 0.5. (b) Pressure contours
(c) Pressure contours t = 3.
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where the specific heat ratio c = 5/3. The computational domain is [0, 2p] · [0,2p]. Periodic boundary condi-
tion is imposed on boundaries in both x- and y directions. We use a uniform mesh of 193 · 193 grid nodes. The
same mesh was used by Jiang and Wu [4] and Tang and Xu [11].

Fig. 8 shows the pressure contours of the present CESE results at t = 0.5, 2 and 3, respectively. The results
here are calculated by using the original CESE method. Although not shown, the results calculated by using
Schemes I and II are virtually the same in these contour plots. To assess the accuracy of the present results, the
employed contour levels are exactly the same as that used by Jiang and Wu [4], i.e., 12 equally spaced contour
levels ranging from 1.0 to 5.8 for t = 0.5, from 0.14 to 6.9 for t = 2, and from 0.36 to 6.3 for t = 3. Although
not shown in the present paper, side-by-side comparisons between the present results and Jiang and Wu�s
results showed no obvious difference.

For quantitative details of the calculated results, Fig. 9 shows the pressure profiles along the line of
y = 0.625p at time t = 0.5, 2 and 3, calculated by using the three CESE schemes: the original scheme and
the extended Schemes I and II. For t = 0.5, there is no difference between the results by the three schemes.
At t = 2, result by Scheme II showed a more pronounced gradient near x = 5.5. For t = 3, small differences
Fig. 9. Pressure profile of a MHD vortex problem along line y = 0.625p. (a) Pressure profile at t = 0.5. (b) Pressure profile t = 2. (c)
Pressure profile t = 3.
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could be discerned on the left end of the plot. In Fig. 9(c) result reported by Tang and Xu [11] is also plotted.
No obvious difference can be observed between their results and the present results by the original CESE
scheme and Scheme I.

We remark that in Scheme II, there is no damping treatment for discontinuity in calculating the first-order
derivatives oBx/ox and oBy/oy. Moreover, the mesh stencil for calculating Bx, By, oBx/ox and oBy/oy are larger
than that the one (the original CESE method) used for the rest of unknowns due to the use of SSE and SCE.
Fig. 10 shows time history of the magnetic energy of the whole flow field. Solid line is the result from the
original CESE method, and dots are Tang and Xu�s results in [11].

To further investigate the capability of the CESE method for $ Æ B = 0, we adopt the projection method
and solve the Possion equation at every time step,
Fig. 10. Evolution of magnetic energy of a MHD vortex problem.

Fig. 11. Comparison between CESE method with and without a projection procedure for maintaining $ Æ B = 0.
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r2/þr � B ¼ 0; ð5:1Þ

where B is obtained from the CESE method described in Section 3. According to the mesh arrangement shown
in Fig. 1, Eq. (5.1) is discritized as,
/jþ1=2;k � 2/j;k þ /j�1=2;k

ðDx=2Þ2
þ

/j;kþ1=2 � 2/j;k þ /j;k�1=2

ðDy=2Þ2
¼ �ðr � BÞj;k. ð5:2Þ
An implicit solver is employed to solve the above equation, and the magnetic field B is updated by,
Bc ¼ Bþr/. ð5:3Þ

The updated Bc is then used to march the flow solution to the next time step. Fig. 11 shows pressure profiles
along y = 0.625p at t = 3 with and without the projection procedure. We observe no obvious improvement by
employing the projection procedure.
6. Conclusions

In this paper, we report the extension of the CESE method for solving the ideal MHD equations in two-
spatial dimensions with emphasis on satisfying the $ Æ B = 0 constraint. Three numerical treatments are devel-
oped: (i) a simple algebraic adjustment of ðoBx

ox Þ
n
j;k and ðoBy

oy Þ
n
j;k after each time marching step to satisfy $ Æ B = 0,

(ii) an extended CESE method based on the constraint-transport method to calculate the magnetic field, and
(iii) a projection method by coupling a Poisson solver with the original CESE method. To demonstrate the
capabilities of the CESE methods, two benchmark problems are calculated and compared with the previously
published results, including a rotated MHD shock tube problem and a MHD vortex problem. All present
results produced by the new CESE schemes compare favorably with the previous results. Moreover, we dem-
onstrate that the original CESE method could be directly used to calculate the MHD equations without any
difficulty. For the benchmark problems, the results are as accurate as that produced by using sophisticated
special treatments.
Appendix. Jacobian matrixes

2 3
Jx ¼ oF

oU
¼

0 1 0 0 0 0 0 0
c�3

2
u2 þ c�1

2
ðv2 þ w2Þ ð3� cÞu ð1� cÞv ð1� cÞw c� 1 �cBx ð2� cÞBy ð2� cÞBz

�uv v u 0 0 �By �Bx 0

�uw w 0 u 0 �Bz 0 �Bx

A1 A2 A3 A4 A5 A6 A7 A8

0 0 0 0 0 0 0 0

� uBy�vBx

q
By

q � Bx
q 0 0 �v u 0

� uBz�wBx
q

Bz
q 0 � Bx

q 0 �w 0 u

6666666666666664

7777777777777775

;

ðA:1Þ

where
A1 ¼ �c
ue
q
þ ðc� 1Þuðu2 þ v2 þ w2Þ þ c� 2

2
u

B2
y þ B2

z

q
þ c

2
u

B2
x

q
þ Bx

vBy þ wBz

q
; ðA:2aÞ

A2 ¼ c
e
q
þ 3

2
ð1� cÞu2 þ 1� c

2
ðv2 þ w2Þ � c� 2

2

B2
y þ B2

z

q
� c

2

B2
x

q
; ðA:2bÞ

A3 ¼ ð1� cÞuv� BxBy

q
; ðA:2cÞ
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A4 ¼ ð1� cÞuw� BxBz

q
; ðA:2dÞ

A5 ¼ cu; ðA:2eÞ
A6 ¼ �cuBx � ðvBy þ wBzÞ; ðA:2fÞ
A7 ¼ �vBx þ ð2� cÞuBy ðA:2gÞ
and
A8 ¼ �wBx þ ð2� cÞuBz. ðA:2hÞ

Matrix
Jy ¼ oG

oU
¼

0 0 1 0 0 0 0 0

uv v u 0 0 �cBy �cBx 0
c�3

2
v2 þ c�1

2
ðu2 þ w2Þ ð1� cÞu ð3� cÞv ð1� cÞw c� 1 ð2� cÞBx cBy cBz

�vw 0 w v 0 0 �Bz �By

B1 B2 B3 B4 B5 B6 B7 B8

uBy�vBx

q � By

q
Bx
q 0 0 v u 0

0 0 0 0 0 0 0 0

� vBz�wBy

q 0 Bz
q � By

q 0 0 �w v

2
666666666666664

3
777777777777775

;

ðA:3Þ

where
B1 ¼ �c
ve
q
þ ðc� 1Þvðu2 þ v2 þ w2Þ þ c� 2

2
v

B2
x þ B2

z

q
þ c

2
u

B2
y

q
þ By

uBx þ wBz

q
; ðA:4aÞ

B2 ¼ ð1� cÞuv� BxBy

q
; ðA:4bÞ

B3 ¼ c
e
q
þ 3

2
ð1� cÞv2 þ 1� c

2
ðu2 þ w2Þ � c� 2

2

B2
x þ B2

z

q
� c

2

B2
y

q
; ðA:4cÞ

B4 ¼ ð1� cÞvw� ByBz

q
; ðA:4dÞ

B5 ¼ cv; ðA:4eÞ
B6 ¼ ð2� cÞvBx � uBy ; ðA:4fÞ
B7 ¼ �cvBy � ðuBx þ wBzÞ ðA:4gÞ
and
B8 ¼ �wBy þ ð2� cÞvBz. ðA:4hÞ
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